

THE PREMIER CONFERENCE

EXHIBITION ON

COMPUTER GRAPHICS &

NTERACTIVE TECHNIQUES

LIP-SYNC ML:

MACHINE LEARNING-BASED FRAMEWORK TO GENERATE LIP-SYNC ANIMATIONS IN FINAL FANTASY VII REBIRTH

AGENDA

- Introduction
- Workflow
- Results
- Machine learning details
- Conclusion

MASATO NAKADA

SQUARE ENIX CO., LTD.

INNOVATION TECHNOLOGY DEVELOPMENT DIVISION

R&D ENGINEER

LEANDRO GRACIÁ GIL

SQUARE ENIX CO., LTD.

INNOVATION TECHNOLOGY DEVELOPMENT DIVISION

SENIOR MACHINE LEARNING EXPERT

FINAL FANTASY VII REBIRTH (2024)

The second game of FINAL FANTASY VII remake trilogy

Previous title: FINAL FANTASY VII REMAKE (2020)

MISSION ON LIP-SYNC ANIMATION

Quality

- Express attractive characters and their dialogues.
- Provide a game experience
 with the quality of our past CGI movie.

Efficiency

 Create a large amount of lip-sync animations only from audio.

OUR APPROACH IN FINAL FANTASY VII REBIRTH

FINAL FANTASY VII REMAKE

FINAL FANTASY VII REBIRTH

Phoneme-based method

ML-based method: Lip-Sync ML

Use machine learning approach.

- Input: Audio
- Output: Lip-sync animations
- Training data: Cutscenes in FINAL FANTASY VII REMAKE

RESULTS IN THE GAME (ENGLISH)

PREVIOUS PHONEME-BASED METHOD

Blend poses in the Lipmap corresponding to each phoneme.

LIPMAP

Lipmap is an asset storing multiple mouth poses for certain phonemes.

We choose 8 poses (incl. default) for FINAL FANTASY VII REMAKE and FINAL FANTASY VII REBIRTH.

LIP-SYNC ML

Input: Audio

Output: Lip-sync animations

	Bone-based animation	Pose weight animation (Lsdml)
Feature	Better quality	Easy to synthesized with animations of other facial behaviors
Usage	Base keyframes to create lip-sync animations for cutscenes	Used in simple event scenes, combat and field actions

9

WORKFLOW

GENERATE ANIMATION

Perform machine learning generation process.

Support batch processing to deal with multiple voices.

CONVERT BONE ANIMATION INTO RIG CONTROLS

Determine rig parameters in each animation frame based on affected bones.

EDIT LSDML

Edit Lsdml as animation curves in Maya if necessary.

In game engine, LsdmlPlayer plays the animation.

COMPARISON WITH THE PREVIOUS METHOD

COMPARISON WITH THE PREVIOUS METHOD

This table is about animations with voices for simple event scenes and action sequences.

		FINAL FANTASY VII REBIRTH	FINAL FANTASY VII REMAKE
M	lethod	Lip-Sync ML (Lsdml)	Phoneme-based method
The number of audio clips		About 136,000	About 96,000
	The number of clips corrected manually	10 ~ 20	More than 100

FUTURE WORK ON THE TOOL

Make setting up the tool easier.

Users have to install necessary environment for machine learning currently.

LIP-SYNC ML: MACHINE LEARNING-BASED FRAMEWORK TO GENERATE LIP-SYNC ANIMATIONS IN FINAL FANTASY VII REBIRTH

MACHINE LEARNING DETAILS

TRAINING DATA

- About 3.5 hours of cutscene data from FINAL FANTASY VII REMAKE.
 - 53 different characters.
 - 3 facial skeletons: main characters, mob characters, Red XIII.
 - 2 languages: Japanese and English.
- Bone transform animation data (was easier to collect).
- Data augmentation: random speed and pitch changes.

MODEL ARCHITECTURE

- Designed as 2 sub-models, trained end-to-end.
- Voice model: transform audio into voice features.

LEARNED STYLES

- Multiple independent styles: language, actor, rig.
- Each style has a set of exclusive values (Actor: Cloud, Aerith, Tifa...).
- Styles can also be left empty.

Language	Japanese	English	
Actor	Cloud	Aerith	Tifa
Rig	Main Chara	Mob Chara	RedXIII

Language=None

Actor=Cloud

Rig=MainChara

MODEL ARCHITECTURE

- Designed as 2 sub-models, trained end-to-end.
- Voice model: transform audio into voice features.

AUDIO PROCESSING

- Convert audio to mono.
- Resample to 19200 Hz (makes converting to 30 and 60 fps easier).

SPECTROGRAM GENERATION

- Sample rate: 19200 Hz, window size: 200, stride: 160.
- Produces 120 spectrogram frames per second.
- Frequency range: 80 to 8000 Hz.

MEL SCALE CONVERSION

- Convert vertical axis to mel scale (logarithmic) using 256 bins.
- Closer to human perception of pitch.
- Changes in pitch become closer to vertical translations.

LOG MEL SPECTROGRAM

- Apply logarithm to the values (amplitude).
- Closer to human perception of volume.
- Can be seen as an image of 120 frames per second (time) x
 256 mel bins (pitch), with a single value per pixel (volume).

AUDIO FEATURES

- Absolute pitch: use each column directly as a feature vector (bag of features).
- Relative pitch:
 process as a 2D image
 (pitch invariance).

RELATIVE PITCH PROCESSING

- Transfer information from height into feature depth.
- Progressively apply 2D convolutional networks with a stride of 2 in the vertical axis to halve height, while increasing feature depth.

2D Conv depth=48 kernel=7x3 stride=1x2 ReLU GroupNorm groups=4

2D Conv depths=64 kernel=7x3 stride=1x2 ReLU GroupNorm groups=8

depth=96
kernel=7x3
stride=1x2

ReLU
GroupNorm
groups=8

2D Conv

2D Conv depth=128 kernel=7x3 stride=1x2 ReLU GroupNorm groups=16

Custom residual blocks

CUSTOM RESIDUAL BLOCKS

- Extension of ResNet block [1].
- GN: Group
 Normalization [2].
- **SE**: Squeeze and Excitation [3].
- Dotted: ResNet shortcut connection.

COMPUTING AUDIO FEATURES

- 3 groups of 3 consecutive residual blocks with different time dilations.
- In each group: 1st block halves height, 2nd and 3rd apply time dilation.
- Absolute pitch features are combined using one more residual block.

2D Residual
Block (x 3)
depth=128
kernel=7x3
dilation=1,2,4
stride=2,1,1

2D Residual
Block (x 3)
depth=192
kernel=7x3
dilation=1,2,4
stride=2,1,1

2D Residual
Block (x 3)
depth=256
kernel=7x3
dilation=1,2,4
stride=2,1,1

Reshape to 1D

FC

Log mel spectrogram

1D Residual Block (x1)

depth=256 kernel=1

Audio features

VOICE FEATURES

- 3x Transformer Encoder blocks [4].
 - Attend 1 second before / after.
 - Relative positional embeddings [5].
- Learn styles using LoRAs [6].
 - LoRAs for each style value.
 - Rank 8, added to qkv matrix.
 - Shared by all transformer blocks.

ANIMATION MODEL

31

FRAME FEATURES

32

- Voice features use 120 fps.
- Group and average voice features to 30 or 60 fps as needed.
- Apply one more transformer encoder block as before.

ANIMATION OUTPUTS

- Transform frame features into per-bone animation transform diffs.
- Format is the same as in training data (could also be rig parameters).
- Separate Fully Connected layers for each output rig / facial skeleton.
- Add character rest pose. Per frame outputs, no keyframes.

33

LIPMAP POSE WEIGHTS

- Transform frame features into lipmap pose weights (rig independent).
- Lipmap poses are fixed, pose weights are generated.
- Blending poses is a differentiable operation, can backpropagate.
- Same loss as animation outputs.

ADDITIONAL LOSS IMPROVEMENTS

- Compensate how numerically relevant errors are for each value.
 - For example, a 0.5 error in a translation is likely small, but not in a scale factor.
 - Precompute the min-max ranges of each value in training data.
 - Rescale errors to make them relative to the sizes of their min-max ranges.
- Improve closing the mouth in generated animations.
 - Exploit the fact that rest poses have their mouths closed.
 - Scale up errors the closer training data values are to their rest pose.

RESULTS IN THE GAME (MULTIPLE LANGUAGES)

CONCLUSION

In FINAL FANTASY VII REBIRTH,
our machine learning-based framework Lip-Sync ML
allowed animators to efficiently create high-quality lip-sync animations.

This enabled characters to feel more natural when speaking, making dialogue scenes feel more immersive.

Thank you for your attention.

Masato Nakada

nakmasat@square-enix.com

Leandro Graciá Gil

graclean@square-enix.com

Maya is a trademark or registered trademark of Autodesk, Inc.

All other trademarks are the property of the respective owners.

For slides

(http://www.jp.square-enix.com/tech/publications.html)

REFERENCES

- [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016.
 Identity Mappings in Deep Residual Networks. https://arxiv.org/pdf/1603.05027
- [2] Yuxin Wu and Kaiming He. 2018.
 Group Normalization. https://arxiv.org/pdf/1803.08494
- [3] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. 2019.
 Squeeze-And-Excitation Networks. https://arxiv.org/pdf/1709.01507
- [4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2023.
 Attention Is All You Need. https://arxiv.org/pdf/1706.03762
- [5] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. 2018.
 Music Transformer: Generating Music With Long-Term Structure. https://arxiv.org/pdf/1809.04281
- [6] Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021.
 LoRA: Low-Rank Adaptation of Large Language Models. https://arxiv.org/pdf/2106.09685