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Figure 1: Approximating animation sequences by uniform and nonuniform B-spline. (a) Chicken animation, (b) squirrel animation and (c)
motion capture data of dancing are represented by 11%, 17% and 10% of original data, respectively. Our method using nonuniform B-spline
provides more accurate approximation than using uniform B-spline.

Abstract

This paper presents a new method to approximate animation se-
quences through a nonlinear analysis of the spatiotemporal data.
The main idea is to find a spline curve which best approximates
a multivariate animation sequence in a reduced subspace. Our
method first eliminates data redundancy among multiple animation
channels using principal component analysis (PCA). The reduced
sequence of latent variables is then approximated by a nonuni-
form spline with free knots. To solve the highly-nonlinear multi-
modal problem of the knot optimization, we introduce a stochas-
tic algorithm called covariance matrix adaptation evolution strategy
(CMA-ES). Our method optimizes the control points and the free
knots using least-square method and CMA-ES, which guarantees
the best approximation for arbitrary animation sequences such as
mesh animations and motion capture data. Moreover, our method
is applicable to practical production pipeline because both PCA-
and CMA-based algorithms are computationally stable, efficient,
and quasi manual parameter-free. We demonstrate the capability
of the proposed method through comparative experiments with a
common approximation technique.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation
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1 Introduction

Animation approximation is a common technique to compactly rep-
resent an animation sequence such as mesh animations and skeletal
animations. By approximating an animation curve using a combi-
nation of basis functions, the original animation is described with a
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fewer number of function variables. The animation approximation
is useful not only to compress the data, but also to reduce the de-
grees of freedom of animation control: the free variables of approx-
imation function can be used as control handles to edit the anima-
tion curve. For example, designers prefer to edit a motion capture
data by manipulating a sparse set of control handles rather than by
directly editing the dense sequence of raw data.

Spline approximation is a general method to represent an anima-
tion sequence with a small number of variables, which utilizes a
temporal coherence of the animation data. For example, B-spline
approximation is widely used to reduce the number of free vari-
ables in optimization-based motion editing techniques [Gleicher
1998]. Although most of existing methods use uniform spline be-
cause of its efficiency and simple formulation, it often causes an
increase of redundant data for complex sequences. For example,
when an original animation contains a short subsequence which
shows high-frequency oscillations, many control points have to be
used for reproducing the high-frequency behavior even if the rest
subsequences are near-stationary. Ideally, the knot placement of
the spline should be optimized so that more knots are arranged
around the high-frequency subsequences than the low-frequency
ones. However, such a knot optimization is a highly-nonlinear mul-
timodal problem, which means that the objective function is undif-
ferentiable and the problem typically has multiple local and global
solutions. Since this kind of problem cannot be solved using ef-
ficient numerical algorithm such as Newton’s method, evolution-
ary computation techniques have gained considerable attention in
computer-aided design community.

Dimension reduction technique is also used to eliminate data redun-
dancy of an animation sequence by leveraging a spatial correlation
among multiple animation channels [Alexa and Müller 2000]. By
applying principal component analysis (PCA), the animation data
is approximated by a sequence of the smaller number of latent vari-
ables. Existing methods therefore integrate the spline approxima-
tion and dimension reduction to further reduce the data redundancy
[Karni and Gotsman 2004; Arikan 2006; Liu and McMillan 2006].

This paper presents a new method of animation approximation
which leverages both spatial and temporal correlation of animation
sequence. While we follow an existing approach of animation ap-
proximation using dimension reduction and spline approximation,
we tackle a challenging problem of automatic optimization of free
knots for nonuniform spline. Our method first reduces the dimen-



sionality of an animation sequence using PCA, and the reduced se-
quence of latent variables is then approximated by a nonuniform
spline whose control points and free knots are optimized using a
least square method and a stochastic optimization technique called
covariance matrix adaptation evolution strategy (CMA-ES). The
nonlinear optimization of free knots improves the approximation
accuracy whereas existing techniques use a uniform spline which
often fails to capture dynamic movement in the animation.

Contributions We here summarize the major contributions of
our technique. To the best of our knowledge, we are the first to in-
troduce a stochastic optimization technique, CMA-ES, for optimiz-
ing free knots of nonuniform spline. The most important benefit of
CMA-ES is that it uses fewer manual parameters than other opti-
mization techniques. Thanks to the quasi parameter-free algorithm,
our system requires that a user specify only a few control parame-
ters which can be physically interpreted. In contrast, previous knot
optimization techniques require fine tuning of many manual param-
eters which are unintuitive for ordinary users. Moreover, the com-
putational cost of our method is practical because CMA-ES is an
embarrassingly parallel algorithm. Note that although we only re-
fer to B-spline in the following sections, our CMA-based technique
can be applied for any types of spline which has free knots.

2 Related work

Uniform B-spline is most widely used in commercial products be-
cause of its simplicity and computational efficiency. The uniform
B-spline, however, cannot produce high-frequency vibration of an-
imation curve unless using many control points. To overcome this
problem, several algorithms to optimize nonuniform B-splines have
been proposed in the field of graphics and computer-aided design.
Most of recent methods employ an evolutional computation method
such as genetic algorithm [Yoshimoto et al. 2003] and artificial im-
mune system [Ülker and Arslan 2009]. Gálvez and Iglesias [2011]
also report that a particle swarm optimization (PSO) is computa-
tionally stable, efficient, and works well for arbitrary shapes of
curve including discontinuous changes. However, these previous
techniques often suffer from manual tuning of unintuitive param-
eters. For example, PSO-based method requires that three types
of manual parameters be appropriately adjusted based on domain-
specific knowledge. In contrast, CMA-ES is well-known to be a
quasi parameter-free algorithm: even though it has many manual
parameters, there is no need to change the most parameters from
optimal settings which are suggested in a previous study [Hansen
and Kern 2004]. In fact, we confirmed that the suggested settings
works for all data set used in our experiments. Moreover, CMA-ES
is computationally efficient equivalent to PSO [Hansen 2006].

Our method is also related to [Cashman and Hormann 2012] which
approximates a mesh animation sequence by a nonuniform B-spline
in a PCA-subspace. However, this method only guarantees a local
optimality of the free knots due to its heuristic algorithm. Moreover,
it uses time remapping algorithm to improve the convergence of
the heuristic optimization, which requires redundant data and extra
computation to remap the approximated sequence to the original
time domain. In contrast, our method searches a globally optimum
approximation without using any time remapping algorithm.

3 Algorithm

3.1 Dimension reduction

Given an animation sequence yn ∈ �M |n ∈ {1, · · · , N} where
M and N respectively denote the number of animation channels
and the number of time frames, a low-dimensional animation curve

xn ∈ �L|n ∈ {1, · · · , N} is obtained using truncated PCA [Alexa
and Müller 2000]. The reduced number of principal components L
is determined according to some criterion such as tolerance of ap-
proximation error, lower limit of eigenvalue, and cumulative contri-
bution ratio of eigenvalues. We think the first one is most intuitive
for ordinal users because it can be physically interpreted. If the an-
imation y has a channel of 3D rotations, we use principal geodesics
analysis (PGA) [Tournier et al. 2009] instead of the linear PCA.

3.2 CMA-based spline approximation

The reduced sequence x is approximated by a nonuniform B-spline
x̃ (τ) , 0 ≤ τ ≤ 1 which is expressed as follows:

x̃ (τ) =
K∑

k=0

Bk,D (τ) ck, (1)

Bk,d (τ) =
τ − tk

tk+d − tk
Bk,d−1 (τ) (2)

+
tk+d+1 − τ

tk+d+1 − tk+1
Bk+1,d−1 (τ) ,

Bk,0 (τ) =

{
1 tk ≤ τ < tk+1

0 otherwise
, (3)

∀k : tk ≤ tk+1

t0 = 0, tK+D = 1

where Bk,d(τ) is B-spline basis function, ck ∈ �L|k ∈
{0, · · · ,K} are control points, and t = {t0, · · · , tK+D} is a
knot sequence. The degree of spline D and the number of con-
trol points K are manually specified. The first and last knots are
commonly repeated with multiplicity equal to the degree of spline
D as t0 = · · · = tD = 0 and tK = · · · = tK+D = 1 without loss
of generality, and the rest tD+1 · · · tK−1 are called internal knots.
The goal of the optimization is to find the best placement of the
K −D− 1 internal knots and the associated control points so as to
minimize approximation error. We use root mean squared (RMS)
error as the objective function:

ERMS =

√√√√ 1

N

N∑
n=1

‖xn − x̃ (τn)‖2. (4)

τn = (n− 1)/(N − 1)

Since ERMS is quadratic with respect to control point c, that op-
timal c can be uniquely determined by least square method if knot
sequence t is fixed. However, because ERMS is non-linear and
undifferentiable with respect to t, we cannot use a standard mini-
mization algorithm such as Newton’s methods.

We use CMA-ES and least square method for optimizing free knots
and control points, respectively. CMA-ES is a sampling-based
global optimization technique which generally works for nonlin-
ear, high dimensional problem and the objective function not need
to be differentiable with respect to free variables, both of which
are desirable property for our problem. CMA-ES iterates sampling,
evaluation and updating processes until converging to an optimal
solution. During the iteration, the mean and variance of the sam-
pling distribution are adaptively updated according to evaluation
result at all sampling points using maximum-likelihood estimation.

For our problem, only internal knots are optimized using CMA-ES
since the optimal control points c are uniquely determined when the
knot sequence t is determined. As a result, an iteration of CMA-
based spline approximation is composed of four steps: sampling



of internal knots, least square estimation of control points, evaluat-
ing the approximation error, and updating mean and variance of the
sampling distribution. These processes are iterated until either the
approximation error or the variance gets smaller than given thresh-
old. Each step of the iteration is briefly explained as follows:

(1) Constrained sampling of free knots The candidate knot
sequence t̃s, s ∈ {1, · · · , S} are sampled according to the normal
distribution with the mean and variance, where S is the number
of sampling points. To compose a monotonically increasing knot
sequence, a positive increment between two adjacent knot �t̃d =
t̃d − t̃d−1 is sampled instead of directly sampling t̃d. The non-
negative condition �t̃d ≥ 0 is enforced by simple rounding out as
max(�t̃d, 0). The sampled increments are uniformly scaled by a
factor α so as to ensure tK+D =

∑K+D
d=1 α�t̃d = 1.

(2) Least-square estimation of control points Optimal control
points for each candidate t̃s are uniquely determined using least-
square method. Let C̃s = [c̃s,0 · · · c̃s,K ]T denote a set of control
points, the optimal solution is determined by solving a linear sys-
tem B|̃ts C̃s = X, where Bij |̃ts = Bj,D |̃ts (i/(N − 1)) and n-th
row of X is xn. We use either Moore-Penrose pseudoinverse or QR
decomposition to calculate a minimum-error solution of this over-
constrained linear problem.

(3) Evaluation Each candidate t̃s and associated control points
C̃s is evaluated using the RMS error expressed in Equation 4.

(4) Updating sampling distribution The mean and variance
of the sampling distribution are adaptively updated according to the
evaluation results using maximum likelihood algorithm. Please re-
fer to [Hansen 2006; Hansen and Kern 2004] for the details.

This optimization procedure can be parallelized because each can-
didate t̃s is independently evaluated in step (1), (2) and (3). The
optimization algorithm is currently implemented on multicore CPU
using multithreading technique, and we think that a GPU imple-
mentation could also be possible.

3.3 Quasi parameter-free optimization

The manual parameters of our system are the number of principal
components L, the number of control points K, the degree of spline
D, and the number of sampling points S. The former two param-
eters are determined according to the tolerance of approximation
error or the data capacity. The degree of spline D is generally set
to 2 or 3 because C1 or C2 continuity of the curve is sufficient
to produce a smooth animation. The last parameter, S, should be
manually specified according to the target animation. We experi-
mentally confirmed that 100 ≤ S ≤ 200 was enough to find ap-
proximately global optimum for short animation sequences of less
than 500 frames. Although we can use smaller value of S for an
efficient computation, as many sampling points as possible should
be used for the stable convergence.

4 Experimental results

The approximation capability of our method is evaluated using sev-
eral functional curves, mesh animation sequences, and motion cap-
ture sequences. The approximation accuracy is evaluated using a
distortion measure ED [Karni and Gotsman 2004] expressed as

ED = 100

√∑
n ‖yn − ỹ(τn)‖2∑

n ‖yn − ȳ‖2 , (5)

where ỹ(τn) and ȳ denote the approximated sequence and the mean
of original yn, respectively. All timing were measured on a Dual
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Figure 2: Approximation of test functions by uniform B-splines and
nonuniform ones. Nonuniform B-spline with knot optimization pre-
cisely approximates the original curve since the knots are adap-
tively arranged around where a large change occurs.

Table 1: Distortion measures for mesh animations and motion cap-
ture sequences. “PCs” and “IKs” stand for “principal compo-
nents” and “internal knots”, respectively.

Chicken Squirrel Punching Dancing
9090 DOF 11505 DOF 72 DOF 72 DOF
400 frames 104 frames 538 frames 203 frames

#PCs 86 35 35 34
#IKs 30 50 20 40 50 75 20 40

Uniform 24.1 14.9 19.5 10.9 18.8 11.2 22.8 3.7
Nonuniform 11.8 7.3 10.1 1.7 13.4 7.7 12.8 2.6

Xeon W5590 CPU (16 logical processors) at 3.33 GHz with 48 GB
RAM.

4.1 1D functional curve

We first demonstrate the approximation capability of our CMA-
based algorithm for 1D curve without using dimension reduction.
Figure 2 shows four test functions which are used in [Gálvez and
Iglesias 2011]. Each curve was discretized by uniform sampling
with N = 101 frames. We used cubic B-spline (D = 3), and
S = 100 sampling for the optimization. The test functions (a),
(b) and (d) were respectively approximated using 4 internal knots
where 12 iterations were executed in about 19 milliseconds. For
the function (c), approximation with 5 internal knots required 17 it-
erations executed in about 26 milliseconds. Figure 2 demonstrates
the improvement of accuracy by optimizing knot placements. We
experimentally confirmed that there was no significant difference
in the accuracy with the PSO-based method [Gálvez and Iglesias
2011] because both methods found the same global optimum.

4.2 Mesh animation and motion capture sequence

We compared the approximation accuracy of our nonuniform B-
spline and uniform one using mesh animation sequences of chicken
and squirrel, and motion capture sequences of dancing and mar-
tial arts as shown in the supplemental video. Table 1 summarizes



the distortion measures under several experimental conditions. This
result clearly shows the nonuniform spline provides better approx-
imation than uniform one. Note that we used so small number of
internal knots that causes significant artifacts, in order to visually
emphasize the difference of accuracy between two methods.

For chicken sequence, large error occurred in later subsequences
when the chicken character gets a surprise and beats its wings. The
uniform B-spline caused larger low-frequency error according to
the decrease of the number of knots. In contrast, our nonuniform B-
spline reduced the noticeable error by arranging many knots around
subsequences of dynamic movements. For squirrel animation, our
method managed to capture heady arm swings whereas uniform B-
spline entirely failed to do it. For two motion capture sequences, the
improvement of accuracy was relatively slight as visually signifi-
cant improvement cannot be observed in the rendered animations.
This is because these motion sequences show smooth and constant
movement without sudden change, which can be sufficiently ap-
proximated using uniform spline. This result indicates that our
method is effective especially for dynamic movements which of-
ten appear in stylized and exaggerated animations.

5 Discussion

We have developed an animation approximation technique which
integrates nonuniform spline approximation and dimension reduc-
tion technique. Our main contribution is a stable, efficient and quasi
manual parameter-free algorithm of knot optimization which uti-
lizes the capability of CMA-ES. The nonuniform spline is espe-
cially effective for approximating complex animation sequence of
mixture of stable and dynamic movements.

We here compare our algorithm with some animation compression
and approximation techniques. A soft-body animation compres-
sion technique which integrates PCA and linear predictive coding
(LPC) shows a compression performance superior to our spline-
based method [Karni and Gotsman 2004]. If an animation curve
can be expressed by a k-th order dynamic equation, LPC accurately
approximates the curve with only k+1 coefficients. In contrast, our
method requires more control points if the curve has many local ex-
trema and saddle points. However, the LPC-based method does not
allow a random access to the sequential data due to the sequential
decoding algorithm. The spline-based method provides a fast ran-
dom access in continuous time domain, which is often required for
interactive applications such as games. On the other hand, some
algorithms that are tailored to compress humanoid animation data
[Arikan 2006; Liu and McMillan 2006] also show higher perfor-
mance for motion capture data. We believe that our method can
achieve equivalent performance by introducing domain knowledge
about the skeletal structure and adequate post-processing technique
like inverse kinematics.

One possible application of our method is a bilinear spatiotemporal
basis model [Akhter et al. 2012] which is a generalized model for
representing a spatiotemporal data based on dimension reduction
and timeseries analysis. Although the previous study reports that
orthonormal cosine basis is generally the best choice for a wide
range of animation data, we expect the nonuniform spline provides
better approximation for complex animation sequence. The more
detailed investigation is our future work.

Our future work also includes a development of an automated algo-
rithm to determine the optimal number of control points K. Previ-
ous studies introduce information criteria, such as Akaike informa-
tion criteria and Bayesian information criteria, to determine the best
setting that optimizes a tradeoff between approximation accuracy
and data size. However, the computational time increases accord-
ing to the complexity of the problem because this approach uses a

brute force algorithm. Moreover, we could allocate more control
points to lower eigenmodes than higher ones for efficiently reduc-
ing the data size while preserving the perceivable accuracy. We will
explore an effective algorithm to determine the optimal number of
control points for each eigenmode under the limited data capacity.
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